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This paper analyses the locomotion of a finite body propelling itself through 
aviscous fluid by means of travelling harmonic motions of its surface. The methods 
are developed with application to the propulsion of ciliated micro-organisms in 
mind. Provided that the metachronal wavelength (of the surface motions) is 
much smaller than the overall dimensions of the body, the flow can be divided 
into an oscillating-boundary-layer flow to which is matched an external com- 
plementary Stokes flow. The present paper employs the envelope model of 
fluid/cilja interaction to construct equations of motion for the oscillating boundary 
layer. The final solution for the propulsive velocity is obtained by application 
of the condition of zero total force on the self-propelling body; alternatively, if 
the organism is held a t  rest, the thrust it generates can be computed. Various 
optimum propulsive velocities for self-propelling bodies and optimum thrusts 
for restxained bodies are analysed in some simple examples. The results are 
compared with the relatively sparse observations for a number of micro- 
organisms. 

1. Introduction 
The general fluid-mechanical problem studied in this paper is that of a body 

propelling itself through viscous fluid by means of small-amplitude harmonic 
motions of its surface. The Reynolds number of the motion is assumed to be 
small though precise definition of this condition is delayed until later. The 
frequency w of the motions is assumed to  be invariant over the surface of the 
body and with time. The predominant interest lies in surface disturbances in 
the form of waves travelling over the surface of the body. This theory is de- 
veloped with one particular application in mind, namely, the propulsion of 
ciliated micro-organisms. A significant body of work now exists on the fluid 
dynamics of ciliary locomotion and in view of recent review articles by Jahn & 
Votta (1972) and Blake & Sleigh (1974) the fundamental aspects of this intriguing 
subject will not be repeated here. 

The material presented is intended to rectify a deficiency in the existing 
theoretical analyses of ciliary propulsion. The great majority of the fluid- 
mechanical research beginning with the pioneering work of Taylor (1951) and 
continuing through that of Tuck (1968), Blake (19716, 1972) and others has 
been confined to the analysis of geometrically simplified models involving 
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FIGURE 1. Schematic diagram illustrating the application of the 
oscillatory-boundary-layer technique. 

flat sheets of infinite extent and infinitely long cylinders. The manner in which 
the results of such analyses should be applied to finite organisms, which are 
often ellipsoidal in shape, is not entirely obvious. The only finite-body analysis 
which appears in the literature is that of Lighthill (1952), later modified by 
Blake (1971a), who approximated the travelling surface waves on a sphere by 
combining two spherical harmonic functions whose orders differ by one. Such 
a solution is rather restrictive in terms of the permitted variation of the wave 
form and wave amplitude over the body and its extension to non-spheroidal 
bodies appears to involve considerable algebraic complexity. 

The present paper takes a different approach to the general analysis of finite 
bodies by restricting attention to those organisms whose metachronal wavelength 
2n/E is small compared with their overall dimensions. It follows that since the 
unsteady fluid motions generated by the cilia are generally attenuated like 
e--kg with distance y from the surface (see below) the thickness of this layer is 
small compared with the body size. The overall flow around the organism 
(see figure 1) will thus be comprised of a thin oscillatory boundary layer outside 
which the flow is predominantly steady. Since the Reynolds numbers based 
on propulsive velocity and overall dimensions are extremely small for most 
organisms, the latter is termed the complementary Stokes flow. The basic idea 
will then be to match fluid-mechanical solutions obtained for the motions within 
the boundary layer to this complementary Stokes flow in order t o  predict the 
propulsive motions of the organism. In  general such a procedure is independent 
of the particular means used to model the motions within the boundary layer. 
More specifically, in the case of ciliary propulsion such a technique is equally 
applicable to either of the existing models of fluidleilia interaction, conveniently 
termed the envelope model and the sublayer model in the literature. These 
models, developed by Taylor (1951) and especially Blake (1971a, b, 1972), are 
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reviewed in Blake & Sleigh (1974). Both involve assumptions concerning the 
immediate interaction of the cilia and the fluid, assumptions which enable 
tractable fluid-mechanical models to be constructed. The present paper will 
use only the envelope model within the oscillatory boundary layer; it should 
however be appreciated that a similar analysis could be performed using a 
modified sublayer model. 

Before embarking upon the construction of the solution, it is convenient to 
include some discussion of these interaction models. The envelope model assumes 
that the cilia are sufficiently closely packed together that the fluid effectively 
sees an oscillating material surface comprised of the tips of the cilia. This 
envelope is commonly assumed to be impenetrable and the locus of each material 
point on it may be determined from the locus of the tip of an individual cilium. 
Blake’s (1972) sublayer model, on the other hand, considers the flow amongst 
the cilia; he calculates the interaction of the motion of an individual cilium with 
the parallel steady flow which the ciliary bed is assumed to create. The model, 
however, neglects the unsteady flow interactions between individual cilia. Blake 
& Sleigh (1974) argue that this model is more appropriate for cases in which the 
individual cilium tips are more widely spaced. 

The two models are valid in different circumstances and it is important to 
establish some criterion for the boundaries of their validity. Clearly, the envelope 
model requires that the cilia totally entrain the fluid in the interstitial space so 
that the exterior fluid essentially experiences the motion of a flexible surface 
whose motions correspond roughly to those of the cilium tips. On the other hand, 
the sublayer model is valid only when the fluid entrained by an individual 
cilium does not interact significantly with neighbouring cilia. 

Thus, one possible criterion which might be examined would compare the 
base separation d of the cilia (see figure 2) with the radius of the volume of fluid 
entrained by each cilium near its tip. Neglecting the presence of the nearby 
wall and neighbouring cilia this entrainment radius could be represented by the 
Stokes radius vlq or v lwL,  where q is a typical cilium velocity, o is the radian 
frequency of beat, L is the cilium length and v is the kinematic viscosity of the 
fluid. Thus we propose as a rough criterion that the envelope model becomes 
valid when v / w L  2 d .  This must, however, be qualified by the effect of the nearby 
wall (see, for example, Blake 1 9 7 1 ~ ) .  In  a hypothetical situation in which v is 
gradually increased, the influence of the wall will be felt as v / o L  becomes within 
an order of magnitude of L. But provided that d l L  < 1 much of the interstitial 
fluid has already been entrained by this time. Values of vloL higher than d 
have little relevance except as an indication of maximum entrainment within 
the interstitial fluid. It therefore appears that the envelope model has con- 
siderable relevance provided that 

A further qualification of these conditions is worth noting in view of Blake’s 
(1972) observation that the actual ciliary separation during the effective stroke 
in antiplectic metachronism is much greater than d. A measure of this additional 
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FIGURE 2. Schematic diagram of ciliary metachronism indicating the relative directions 
of metachronal wave propagation and propulsion of the body for (a )  symplectic and ( b )  anti- 
plectic metachronism. Note that during the effective stroke the direction of cilium motion 
is opposite to that of the propulsion. The equivalent material surface used in the envelope 
model is also shown. 

cilium separation d* is easily computed as kLd (figure 2 ) )  where 2nlk is the wave- 
length of the metachronal wave. Replacing d by d* in the conditions (1) gives 

V l W L  $ kLd, kd < 1. ( 2 )  

Taken together, conditions (1)  and ( 2 )  should therefore define a fairly complete 
region of validity for the envelope model. Table 1 presents the values of these 
quantities for three organisms frequently used in locomotion studies. The data 
are taken from Sleigh (1962), Blake st Sleigh (1974), Knight-Jones (1954) and 
other sources. The values appear to confirm the validity of the envelope model 
for Opalina and reject it in the case of Pleurobrachia; .Paramecium is a marginal 
case for which one would still expect some validity. Indeed a study of the con- 
ditions for other micro-organisms suggests that the envelope model may have 
wider validity than it has been given credit for in the literature. 

2. Basic viscous flow formulation 
In order to  pave the way for the particular solutions of later sections, we shall 

begin by briefly outlining the equations and boundary conditions which govern 
the viscous flow induced by a material surface (or ciliary envelope) whose par- 



A theory for ciliary propulsion 803 

Metachronism 

Metachronal wavelength, 2n/k (pm)  
Cilium spacing, d (pm) 
Cilium length, L (pm) 
Fiequency, w/2v  (Hz) 
ICL 
Oscillatory Reynolds number, 
w = w p v  

V I O L  (P4  
kLd (pm) 
kd 

Opalina 
ranarum 

Symplectic 

25 
0’3-3.0 
10-15 

4 
2.5-4’0 
0.0004 

4000 
0.7- 10.0 
0‘07-0.7 

TABLE 1 

Paramecium 
Dexioplectic 

10 
1.5-2-5 
10-12 
30-35 

6-7 
0.0005-0.0007 

500 
9-18 

0.9- 1.5 

Pleurobrachia 
(figures given 
consider the 

comb-plates as 
the individual 

organelles) 
Normally 
antiplectic 

7300 
350 
800 

10 

85 
0.7 

20 
240 

0.3 

- 

titles are performing small-amplitude oscillatory motions. The vector z, will 
denote the mean position of the surface in a co-ordinate system which is fixed 
relative to the mean motion of the surface; thus z, can also be considered to be 
the Lagrangian label for a particular surface particle whose position a t  time t 
is z,. This motion can be generally represented by 

z, - zo = Re (Z(zo) eriUt)  + . . ., (3) 
where t is time, Re denotes ‘the real part of’ and 2 is a complex vector. Let 
the order of magnitude of Z be c; further terms on the right-hand side such as 
higher harmonics will be assumed to be of order c2 or higher. The analysis will 
be confined to purely oscillatory surface motions so that o is real. It follows that 
the velocity q, of a surface particle is 

(4) 
Now let the viscous flow of the fluid near the surface (and resulting in part from 
the movement of the surface) be represented by the velocity q(z). If the con- 
ditions of no slip and impenetrability of the surface are applied, it follows that 
a fluid element next to the surface has the same velocity as the surface particle 
with which it is in contact. Then the following Taylor expansion relates the fluid 
and surface motions: 

( 5 )  

qs = w Im (2 eciwt} + . . . . 

qs(z,, t )  = q @ o ,  t )  + [{(Z, - 2 0 )  . v> 4 2 ,  t ) l O  + . . .? 

where V is the gradient operator and terms with subscript zero are evaluated on 
the mean surface z,. The expressions (3) and (4) for z,-zo and q, can then be 
substituted into (5). Knowledge of the hydrodynamic solution will provide q 
and its spatial derivatives. Further, we propose a series solution to the Navier- 
Stokes equations (see below) for the fluid flow of the form 

q = Re [ql e-iwt + {q, + q3 e-2iwt} + . . .], ( 6 )  
51-2 
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where ql, q, and q3 are in general complex. It will be clear that a solution con- 
sistent with the foregoing boundary conditions will require q1 to be of order B 

and q2 and q3 to be of order e2; further terms in the series (6) will be of higher order. 
Thus ( 6 )  contains the first two terms in a series in ascending powers of e. The 
function q,(z) can be assumed purely real without loss of generality. 

Thus substituting (3)) (4) and (6) into (5) and equating coefficients of coswt 
and of sin wt yields 

- i w z  = (q,),+ ((2. V) q, + (@. V) q3)o + . . ., (7)  

where an overbar denotes a complex conjugate. Terms independent of t  give 

and coefficients of cos 2wt and sin 2wt yield 

(q3)o = - [(Z. V) 9110 + * .  . - (9) 

Equation (7) demonstrates that q1 must, in general, be of order e ;  (8) and (9) 
declare q2 and q3 to be of order e2, so that the last term in the brackets in ( 7 )  
is then of order €3. Further, the neglected terms in (6)-(9) are then respectively 
of order €3, €5 ,  € 4  and e4. Hence it follows that we may substitute the approximate 
version of (7) ,  namely 

= i(q1)oh (10) 

into (8) and (9) and still maintain the same order of accuracy in those equations 
(neglected terms being of order e4). The result is 

( 9 2 ) o  = - W4w) [(Sl * V )  91- (91. V) q,lo, 

(q3)o = - ( i lw) C(q1.V) q11w 

(11) 

(12) 

Equation (1 1) represents the boundary condition on the steady component of 
the viscous flow. The quadratic combination on the right-hand side is the first 
of three nonlinear terms which play an essential role in determining the self- 
propulsion of the body. It arises simply from kinematic considerations on the 
oscillating boundary and has been previously identified by Blake (1971 b )  and 
others as the major propulsive effect in the envelope model of ciliary propulsion. 

The Navier-Stokes equations for the flow of an incompressible Newtonian fluid 
are 

with the continuity equation V . q = 0. If the vorticity S2 is defined in the normal 
way as S2 = V x q the equation for S2 from (13) is 

a q a t  - v x (q x a) = V V ~ Q .  (14) 

The vorticity S2 will be expanded in a series similar to the series (6) for the 
velocity, so that  

S2 = Re [Q2, e+t + (S2, + S2, e-2i0t) + . . .I, (15) 
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where 8, = V x q,, Q, is O(E)  and Q, and Q3 are O ( 8 ) .  Substitution of (15) into 
(14) yields 

v a ,  = - iwc+ + 0(83), 
V 2 8 ,  = - (4l4-1 [(Q,. V) q, + (a,. V) q1- (q,. V) Q, - (81. V) 811 + O(e4) 

(16) 

= - (4v)-1 [V (4, a,) + v x (4, x a,)] + o(E4). (17)  

The right-hand side of (17) represents the second nonlinear contribution to 
the steady component of flow. However, because this arises from the convective 
inertial terms in the Navier-Stokes equations, its order of magnitude generally 
differs from that of the kinematic contribution by virtue of the Reynolds number 
W (represented by the factor l /v) .  I ts  influence is therefore slight at  the typically 
small values of W relevant to ciliary propulsion. 

The characteristics of the solution of the basic equations (16) and (17) with 
boundary conditions (10) and (11) are best illustrated by an example. Consider 
a body (micro-organism) propelling itself through a fluid otherwise a t  rest by 
means of an oscillating surface (ciliary field). Given the surface motion Z the 
oscillatory first-order fluid motion q, may be found entirely from (16) and (10); 
the condition that the total energy imparted to  the fluid by the body must be 
finite requires that q, be rather rapidly attenuated with distance from the 
surface (usually like e+y, where Ic is the wavenumber and y is normal to the 
surface). It follows that the right-hand sides of the equation (17) for q, and 
condition (1 1) are then known functions, and the solution for q, may be obtained. 

But now an essential feature of the solution becomes evident. Clearly one 
may arbitrarily add t o  q, any steady Stokes flow which has zero velocity on the 
mean surface. This addition would violate none of the conditions or equations 
established thus far, yet would arbitrarily alter the uniform streaming velocity 
a t  infinity (or propulsive velocity). Clearly the missing element is the fundamental 
condition that the total force on the self-propelling body must be zero. Only 
after application of this condition can the propulsive velocity be calculated. I n  
order to impose this condition the stresses on the oscillating material surface, 
whose fundamental development is included in the next section, must be 
evaluated. 

For the mathematical analysis it is convenient to divide q2 into a particular 
solution qp which obeys (1 1) but which involves no streaming motion a t  infinity 
and a complementary solution q;, referred to earlier as the complementary 
Stokes flow. The latter must therefore satisfy 

v2q; = 0 
and the boundary condition 

( 9 3 0  = ( i / 4 4  [V x (Sl x i i d o  - ( W o -  (19) 

After application of the zero-total-force condition, the uniform streaming q; a t  
infinity will yield the propulsive velocity of the body. 
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3. Stresses on the oscillating material surface 
In  this section the stresses on an element of oscillating material surface are 

analysed so that the condition of zero total force may be obtained by integra- 
tion of these stresses over the entire surface of a body or organism. Within the 
fluid the stress tensor will be denoted by x ,  where in the normal fashion 

x = -PI + ~,uA,  

p being the hydrostatic pressure, 1 the idemfactor and A the rate-of-deformation 
tensor. Clearly both x and p may be expanded in the same manner as q: 

n = Re [.rel e-iwt + {n, + x3 e-2iwt} + . . .I, 
p = Re [p ,  e-iwt + { p ,  +p3 e-ziwt) + . . .I. 

(20) 

(21) 

Consider an element of oscillating surface and define orthogonal surface 
co-ordinates (s,, s,) and a normal co-ordinate y on the corresponding element of 
mean surface. If 1, m and n are unit vectors in the s,, s2 and y directions and 
Z,, 2, and Z3 are the components of Z in these three directions then a vector 
element d S ,  of the instantaneous surface is related to the element n ds, ds, of mean 
surface by 

Using (8) this may be written as 

Now the force on this element a t  any instant in time is given by z,. dS,, where 
the subscript I denotes evaluation a t  the instantaneous position in the fluid. 
Here xI must be replaced by a quantity evaluated on the mean surface by ex- 
panding in Taylor series in the manner previously used for the surface boundary 
condition, i.e. 

(24) 

Using (23) and (24) we may evaluate the effective local force on the element 
ds,ds, of mean surface. This comprises oscillatory forces and steady forces 
arising from the nonlinearity in (24). When the steady component is extracted 
a,s being of particular interest and a stress vector T~ is defined as the steady part 
of x I .  d S ,  divided by cls, ds,, one obtains 

XI = no+{( 2,-z,).V)x},+ ... . 

+ = (n,),, . n + (i/4w) [{(ql. V) GI- (Q,. V) xl> .  n + x,. V(q,.n) 

-5,. V(q1. n)lo. (25 )  

Thus a third quadratic combination of first-order oscillatory terms makes its 
appearance in the solution and contributes to the solution q, for the steady flow. 
This third contribution arises from the expression for the stresses on the material 
surface and makes its contribution to  the propulsive velocity through the 
condition of zero total force on the body. We shall see that for finite bodies this 
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contribution is generally of the same order of magnitude as that arising from the 
kinematic surface condition, a fact which does not appear to have been elucidated 
before. The oversight is probably due to the fact that this third contribution is 
identically zero in solutions for infinite plane sheets or cylinders, a feature of 
these simple analyses which is further discussed in the following section. It 
follows that to draw conclusions on the propulsive velocity of an organism on 
the basis of infinite models is to neglect totally this first-order contribution. 
As demonstrated by the examples of 3 6, its effect may be to enhance or reduce 
the propulsive velocity of the body depending upon the nature of the surface 
motions or ciliary beat. 

It is convenient to divide the stress ~8 in to  a component TP due to the particular 
solution qg plus the additional quadratic component of (25), and a component 
P due entirely to the complementary Stokes flow. Hence 

TP = [7c$'lO. n + (i/40) [{(ql. V) 7E1 - (ti1. V) z1}. n 
+ n1. V(ii1. n) - El. V(q,. n)Io, (26) 

7c = [x3,,.n, (27) 
where xg and T$ arise from qg and qg. 

4. The infinite oscillating sheet 
To prepare for the oscillating-boundary-layer theory of the following section, 

it is worth illustrating how the formulation of the preceding sections can be 
employed to solve the problem of a semi-infinite body of fluid bounded by an 
infinite sheet whose surface particles are performing small oscillations. This 
problem has been treated before, at  least in part, by Taylor (1951), Tuck (1968) 
and Blake (19716). Only the case in which the fluid motion is confined to an 
x, y plane perpendicular to the mean surface y = 0 is considered. The surface 
motion is comprised of waves travelling in the positive-x direction. Since the 
fluid flow is planar it is convenient to define stream functions +l and & corre- 
sponding to  the velocity vectors q1 and q;. An appropriate solution to (16) is then 

(2s) = F{r exp ( k k  - ky) + exp [kix + kf - B1 + i/3J y]). 
In  this expression k is the wavenumber of the surface motions and if W denotes 
the oscillatory Reynolds number wlk2v, then 

P l . 2  = {*[(I + W2) t  * 11p. (29) 
Note that, when W < 1, p1 z 1 + + W2 and p2 % 4 W .  Further v and ra re  arbitrary 
complex constants, which will shortly be replaced by constants having a more 
direct physical interpretation. 

Substituting (28) into the right-hand side of (17) and integrating gives the 
particular solution @?j' : 
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Note that this yields zero velocity as y -+ co in accordance with our requirement 
on y@. The boundary conditions on $; thus become [equation (19)] 

( a & / w o  = 0, (31) 

= + U ,  say. (32) 
The appropriate complementary Stokes flow is thus simply $; = + Uy. Hence, 
owing to its surface motions, the sheet is observed to swim through fluid other- 
wise a t  rest with a velocity - U in the positive-x direction. The material surface 
motions are obtained through (10) as 

x, - xo = Re ((ikr/o) ( - p1 + ipZ - C T )  exp [i(kxo - ot)]}, 
ys-yo = Re{(kF/w) (1 +cr)exp [i(kxo-wt)l}, 

(33) 

(34) 
and clearly have a travelling wave form where (xo,yo) is the mean position of 
a surface particle (yo = 0 )  and (xs, y,) is its position a t  time t. 

It is convenient to envisage these material surface motions as comprised of 
two travelling waves, one of displacement in a direction normal to the mean 
surface (the y wave) and one in the plane of that surface (the x wave). The motion 
can thus be characterized by three quantities, namely a basic amplitude, the 
ratio of the two amplitudes and a phase difference. In  calculating these quantities 
from (33) and (34) it becomes clear that one should replace !2 and G by one complex 
and one real parameter, r and A respectively, which are more natural for the 
presentation of results: 

(35) (1 + r )  = 2( 1 + g)/( I - p1 + ipJ, A - (k2/w)  [&rm(P1- 1)lj- 
It follows that the propulsive velocity 

is obtained from a surface motion whose amplitudes from (33) and (34) are 

k 2 1 ~ s - ~ 0 1 2  = A ~ ( T -  I)(?- I) ,  
k21?/,-yo1z = A2(7+ I ) (?+ I). 

(37) 

(38) 
The real parameter A thus represents the basic amplitude of the surface motion; 
in later sections it is convenient to associate i t  with an 'equivalent ' ciliary length 1 
given by 

(39) 
On the other hand the complex quantity r contains information only on the 
ratio of the x- and y-wave amplitudes and the phase difference between them. 
For the purposes of visual presentation the quantity K will define the amplitude 
ratio, where from (37) and (38) 

1' = Ixs-xo12+ Iys-yo12 = 2A2(7T+ l ) / k 2 .  

ThusTaylor's ( 1  951) first-order solution is the special case K = - I of no tangential 
motion. On the other hand one of the cases treated by Tuck (1968) is that of 



A theory for ciliary propulsion 809 

no normal motion, K = + 1. Further, if the phase angle by which the x wave 
leads the y wave is denoted by 8, - &r then 

i(7 - ?) 
(77- 1)’ 

i(7 - 7) 
{ ( 7 2 -  1) (72- 1 ) y  

tan8, = - sin8, = 

Thus the parameter 7 defines both K ,  the amplitude-ratio parameter, and 8,, 
the phase angle; indeed the inverse of (40) and (41) is 

(42) 
(1 - K2)* - cos8, + iK sin 8, 

K cos 8, - i sin 8, 7 =  

This complex quantity 7 will thus be termed the wave-form parameter. Each 
surface particle performs an elliptical orbit whose shape and orientation is 
easily related to and completely described by the two parameters K and 8, 
or alternatively by the wave-form parameter r. The variations are illustrated 
in figure 3, where the fluid should be envisaged as lying above a horizontal 
material surface whose fluctuations in position are travelling towards the right- 
hand side of the page. In  the envelope model of ciliary motion these orbits may 
be considered as the loci of the cilium tips. 

Other properties of the fluid motion are easily calculated. The rate 2 of 
dissipation of energy per unit area of the mean surface may be evaluated as 

J!3 = (2dp /k)  A2[77 + pll, (43) 
p being the dynamic viscosity. This is, of course, equal to the rate at  which work 
is done by the surface on the fluid in producing the motion. Also of interest is 
the steady flux of fluid in the positive-x direction relative to the fluid a t  y = co. 
This flux per unit breadth of the planar flow is 

The ratio i@/U can then be considered as the displacement thickness of the 
oscillatory boundary layer. 

Finally, it is particularly important to note, as Taylor (1951) did, that the mean 
stress on the oscillating surface must be zero from a simple momentum argument. 
Though further proof of this fact is unnecessary, it can be verified, albeit with 
considerable algebra, by substitution of the solution into (26) and (27). In  this 
regard the reader is referred to equations (64) of the following section. It follows 
that this flat-sheet solution is somewhat degenerate in that the zero-total-force 
condition is automatically satisfied through the choice of the solution for +j. 

Two quantities of particular interest from the point of view of ciliary locomo- 
tion are the propulsive velocity for a given ‘ciliary length’ I and the propulsive 
velocity for a particular energy expenditure. From the above equations these 
ratios can be written in the alternative non-dimensional forms 

U (77-7-7-/3c1) +K-(P1+1)(1-K2)1cosOp 
2(7? + 1) 2/31 = 2 = -  



810 C. Brennen 

K=O 

I 
1 
I 
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e,=o On= n e,=2 n 

,- Ciliary tip locus 

Metachronal 

FIGURE 3. Diagram dernoristrating how the elliptic locus of a surface particle varies with the 
pmameters K and 8,. Loci are shown for K = - 1 to + 1 in steps of 0.5 arid for 0 ,  = 0 to 277 
in steps of i7r. The mean surface is horizontal, the fluid above it and the surface waves 
travelling to the right. An example of a ciliary tip locus (symplectic) is indicated below. 

I n  the limit W -+ 0 of small Reynolds number both of these quantities are given 
simply by 

U/wltl2 --f 6+U/,!? -+ $[( 1 - K2)4 cos 8, - KJ as W --f 0. (47) 

This function is displayed graphically in figure 4. It is clearly seen that there are 
two modes of surface motion which yield optimal performances either in terms 
of the velocity for a given length 1 or in terms of the velocity for a given energy 
expenditure. I n  the case K = - 1/42 with 8, = 0 a maximum propulsive velocity 
of Ulwkl2 = 1/42 is obtained in the opposite direction to  the wave propagation, 
a situation which corresponds to symplectic metachronism in ciliary propulsion. 
The values I !  = + 1/,/2! and 8, = n- yield the same optimal velocity in the Sume 
direction as the wave propagation and hence correspond t o  optimum antiplectic 
ciliary motion. 
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0, 
FIGURE 4. The variation of the propulsive velocity U/ok12 or w,uU/E with wave-form 
type given by K and 6, for the infinite-flat-sheet solution when W -+ 0. Contours are 
labelled with values of U/wklz or w,uU@. 

Similar figures were generated for finite W. However, even with W = 1, the 
results were negligibly different from those of figure 4, and since the validity for 
W > 1 is clearly in doubt no such figures are presented. Though the effect is 
extremely small and therefore probably not of any practical application, it is 
interesting to note that the effect of W on the optimum values of Ulwlc21 is to 
reduce the absolute value of the symplectic optimum by &(2+ J2) W 2  while 
increasing the antiplectic optimum by&(2 - 4 2 )  W2.  But these values appear too 
small to justify any preference for antiplectic metachronism in micro-organisms. 

Finally, it is readily demonstrated from the above relations that the mass flow 
in the positive-x direction relative to the fluid a t  infinity is given by 

41Cf/wl2 -+ - (I  - K2)* cos 0, as W -f 0. (48) 

Values of this quantity are identical to those shown in a later graph, figure 9. 
Note that the maxima are different from these of figure 4. It can also be shown 
that & is directly proportional to the area described by the ciliary loci of figure 3. 

5. Oscillating-boundary-layer theory 
Having developed the basic equations in §§ 2 and 3 and delineated the features 

of the infinite-sheet solution in the last section, we have laid the foundations for 
the development of governing equations for the oscillatory boundary layer on 
a finite body in accordance with the ideas outlined in the introduction. The 
basic approach will involve a generalization of the infinite-sheet solution so as 
to permit the wave form I- and amplitude A of the surface motions to be slowly 
varying functions of the position x on the mean surface. For this purpose the 
following generalized form of (28) is suitable : 

= l?[ae@ + eqz+@], (491 
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where z = k(x+iy) and I?, r, c, 7 and 5 are constants. The fact that this can 
only represent a planar or nearly planar local flow is a substantial approxima- 
tion; it must therefore be noted that the solutions constructed will be inaccurate 
in the neighbourhood of stagnation points and other regions of rapidly diverging 
surface flow. Undoubtedly the solutions could be improved in this regard, but 
are developed in their present form for the sake of algebraic simplicity. 

It follows by substitution into the equation of motion (16) that  &'= -&W; 
we shall also define e = 7 + 6- i, where e thus represents a deviation from the 
infinite-sheet solution of the last section, in which E = 0 and < = i. Then t o  order 
one in the small parameter 6 

r = H P 2  + i(P1+ 1)) + (50)  

6 = H-P2+i(l-P,))+&[1- (P1+i/32)/(P?+P;)1. (51) 

f ( P I  + ~Pz) / (P?+P;) l ,  

Further, substitution of (49) into (10) reveals the nature of the travelling wave 
disturbances on a mean surface a t  y = 0. However, if we replace I? and CT by 
7 ( x )  and A(%), functions of z which are generalizations of the quantities employed 
in the last section and are defined by 

then the properties of the surface disturbance are given by precisely the same 
relations as in the last section, namely 

P I X ,  - xo12 = A2(7 - 1) ('i - l), 

k2/y, - yo12 = A2(7 + 1)  (7 + 1), 

(54) 

(55 )  

K = - (  7+7)/(1 +77), tan8, = i(7-?)/(7'i- 1). (56)) (57) 

The difference is that  the amplitude A(%) and the wave form 7 ( x )  as well as K ,  
S,, etc. are now permitted to be slowly varying functions of x through the 
introduction of the small parameters e and 6-i-e. However neither these 
parameters nor the expressions ( 5 2 )  and (53) will be explicitly calculated during 
the application of the equations developed here; they are merely introduced in 
order to permit ~ ( x )  and A(x) to  be functions of x. 

Equation (17) for the second-order steady motion can then be integrated to 
yield 

From (1  1)  the boundary conditions on the complementary solution become 
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where 

813 

By employing the parameters A and r and expanding in the small parameters e 
and (- i - e these conditions are evaluated to leading order in the small para- 
meters as 

where El = ri--r-?-,8,1, 

Thus & and q; represent the tangential and normal velocities a t  the mean surface 
required of the complementary Stokes flow; they are completely prescribed 
given the surface motions over the body, namely A(x)  and r(x).  Note especially 
that qg is of zeroth order whereas q: is of first order in the small parameters E 

and 5-i-E. This means that our expansion solution is valid only when the 
normal velocities q: in the complementary solution are small compared with 
the tangential velocities qg (see next section). 

Finally, in order to implement the zero-total-force condition, the components 
of the surface stress must be evaluated. The surface stress TP [equation (26)l 
will have components tangential and normal to the surface, denoted re- 
spectively by T? and T$. After substitution of the solution into (26) and con- 
siderable algebra these components can be evaluated to lowest order in the 
small parameters E and 6 - i - E as 

where 

A force Fp on the organism can then be obtained by integration of these stresses 
over the entire surface. Note that rr and TP, become zero when both A and r 
are constants; this is precisely what occurs in the infinite-sheet solution and 
confirms the much simpler momentum argument for that case. Consequently 
FP is a function of the rate of change of the wave-form parameter and amplitude 
over the surface of the body. I n  addition, a force Fe due to the complementary 
Stokes flow may be obtained in the conventional manner by integration of + 
[equation (27)] over the surface. This will be a function not only of the boundary 
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conditions (61) on the complementary Stokes flow, but also of the unknown 
propulsive velocity U a t  infinity. Hence application of the zero-total-force con- 
dition Fp + Fc = 0 will yield a value for the propulsive velocity U .  During this 
procedure, the four quantities C,, X2, X3 and X4 will be evaluated as functions 
of the wave form and hence its variation over the mean surface of the organism. 
By way of simplification it should be noted that as W becomes very small these 
have the following asymptotic behaviour : 

XI + 77-7-7- 1, cz -+ 3-47?, WC3 +- 2i(7-?), WE4 + 2(1 -77). (67) 

The details of the boundary-layer approach to self-propulsion of an oscillating 
body (micro-organism) have thus been developed in this section. Given the 
amplitude A and form r of the surface motion over the body one first computes 
the boundary conditions on the complementary Stokes flow from (61). The 
general Stokes flow obeying these boundary conditions and exhibiting an un- 
known propulsive velocity a t  infinity must then be constructed; for an arbitrarily 
shaped body this, of course, presents the major hurdle remaining in this approach. 
(In this regard the recent work of Blake & Chwang (1974; also private com- 
munication), Chwang & Wu (1974a, b )  and others which enables construction of 
such solutions from distributions of fundamental singularities could be most 
useful.) The complementary Stokes flow and the force Fc are then entirely 
defined except for the velocity a t  infinity or propulsive velocity U .  This is 
finally obtained by integration of TP using (64)-(66) to obtain FP and consequent 
application of the zero-total-force condition. 

Some simple examples of the implementation of the boundary-layer technique 
will be presented in the next section. 

6. Self-propulsion of a spherical body 
In  order to present some simple examples of the boundary-layer analysis of 

self-propulsion, a body whose mean surface shape is spherical is chosen because 
of the ease of construction of a complementary Stokes flow. This is indicated in 
figure 1, where our convention implies that the surface waves travel over the 
body in the direction of increasing 8. Further restricting the example to axi- 
symmetric surface motions, let us examine several examples in which the 
complementary Stokes flow consists solely of the first-order spherical harmonic - 

q, = [ U - C(a/r)3 + D(a/r)]  sin 8, function, so that 

qr = [ - u - 2c(a/r)3 - 2 ~ ( a / q j  cos s,f 
where C and D are constants to be determined and U is the velocity in the 8 = 7~ 
direction as r -+ co (or the propulsive velocity in the 8 = 0 direction under a 
Galilean transformation). 

This complementary Stokes flow must then be matched to the oscillatory 
boundary-layer motions by means of the conditions (61) ; specifically 

Q ~ ] , . = ~  = [ U - C + D] sin 8 = q; = - (wA2/k)  C,, 
q,.~,=, = [ - u - 2c - 201 cos B = q; = d ( ( w ~ z / ~ a )  c,yde. 

(69) 
( 70) 
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Given the amplitude A(@ and wave form 718) of the surface motions, &(8) and 
&(8) may be evaluated from the relations (62) and (63) so as to provide two 
equations for U ,  C and D. In  specific applications it is convenient to integrate 
(70) and use 

where B is an arbitrary constant independent of 8. It is now time to recall the 
restriction of the last section that q; must be small compared with 4:; on the 
other hand El and C, are by definition generally of the same order of magnitude. 
Hence by comparison of (69) and (71) the restriction reduces simply to our 
original condition that ka be large, that is, that the wavelength be small com- 
pared with the overall dimension of the body. 

The force FC on the body in the 8 = 77 direction due to the complementary 
Stokes flow (68) is well known, namely 

[ - U - 2C - 2D] sin 8 = (wA2/k2a) C, + B, (71) 

Fc = - 8n;ovaD, (72) 

and this must be equal to - FP; from the relations (64) the zero-total-force 
condition thus becomes 

which in combination with (69) and (70) should allow solution for C, D and the 
propulsive velocity U .  However, the particular choice of complementary Stokes 
flow for this and the following examples also implies certain functional restric- 
tions on the choice of A ( @  and T ( 8 )  as shown by (69), (70) and (73). It should be 
noted that these functional restrictions can clearly be removed by choosing a 
more general form for the complementary Stokes flow. The objective here is to 
keep the examples as simple as possible. 

We shall examine first a particularly simple case in which the wave amplitude 
A(8) = A* sing 8, B = 0 and the wave form 7 is invariant over the surface of the 
body, so that the X’s are independent of 8. Equations (69), (70) and (73) then 
become 

U - C + D = - WA*2Cl/k, 

- U - 2C - 2 0  = (ha)-, wA*2C,/k, 

D = - o J A * ~ W C ~ / ~ ~  

and the solution yields the propulsive velocity U as 

Because the present method is restricted to  large ka, the term LJka may be 
neglected compared with XI and W&. With regard to these other terms, it is 
clear that the propulsive velocity which one might predict on the basis of an 
infinite-sheet model would contain simply the term C,. As indicated earlier, one 
of the features of finite bodies which this paper has brought to light is the im- 
portance of the zero-total-force condition; the latter has contributed the term 
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0 f n  n 2n 

0, 
FIGURE 5 .  Variation of the propulsive velocity UIoW2 with wave form for the coilstant 

wave-formlvarying amplitude example of the locomotion of a spherical body. 

WC,, which equations (67) indicate to be of the same order as El. Indeed for 
W < 1 those equations yield 

U = ( 2 0 ~ A * ~ / 3 k ) [ 1 + ~ + ? - ~ 5 + $ ( 1 - ~ 5 ) ] .  (75) 

Further, by replacing A* by an equivalent cilium length 1 a t  8 = 
the relation (39) this may be written in the alternative forms 

according to  

kZ2w 5(  1 - T?) + 3(7 + 'i) k12w 
U = - [  9 1 +r5  ] = g [ 5 ( 1 - K 2 ) ~ c o s ~ p - 3 K ]  (76 )  

using (56), (57) and (42). Values of U/kw12 are plotted in figure 5 as functions 
of the wave-form parameters K and 0,. The figure therefore presents the pro- 
pulsive velocity for this first example, in which the equivalent cilium length 
varies over the body like I sin4 8 and in which the wave form, given by K and O,, 
is invariant over the surface. Optimum antiplectic propulsion, for which 
U = -0.648kwl2, occurs a t  K = 3/1/34, 8, = 7~ while optimum symplectic pro- 
pulsion, with U = O.648kwZ2, occurs a t  K = - 3/ 1/34, 0, = 0. Note that if one 
compares the corresponding infinite-model prediction evaluated by omitting the 
WC, term then the corresponding optima are U = T 0.472kwP a t  K = 1/42, 
0, = r, 0. Hence the finite-body analysis actually predicts larger optimum pro- 
pulsive velocities, though the optima occur with somewhat different wave forms. 

I n  the foregoing first example the equivalent cilium length varied over the 
surface while the wave form remained constant. We shall now proceed to  a 
second example, in which the equivalent cilium length I (or A2( 1 + 77)) remains 
constant while the wave form varies over the surface in such a way as to produce 
the correct matching with the selected complementary Stokes flow (68) .  This 
situation is probably more realistic than the first example from the point of view 
of ciliary propulsion. If the analysis is simplified by restricting the investigation 
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to the case W < 1 and employing the relations (67) then it is readily established 
from (69) and (70) that the wave form ~ ( 8 )  must be such that 

( 1 + ~ + ? - ~ 7 ? ) / ( ~ 7 ? + 1 )  = Esin8, where E = 2 ( U - C + D ) / k w Z 2 ,  
and 

where 

and G is an arbitrary constant. If W& and WEp are evaluated from these ex- 
pressions for T the zero-total-force condition becomes 

(3  - $T?)/(T? + 1) = P sin 0 + G, F = 2( - U - 2C - 2 0 )  ka/kw12 

D = -&wk12F. (77) 

(78) 

Hence by eliminating C and D the propulsive velocity U is found to be 

U = $wk12[E +&F - Ffka]. 

If ro and T,, respectively, denote the wave-form parameters at  0 = 0 and $71 it 
follows that 

E = (1 +71+?1-71?1)/(1+71?1), 

G = ( 3 - ~ ~ ~ ? ~ ) / ( 1 + ~ ~ ? ~ ) ,  

F = (3-$71;j1)/(1+71?1)-G, 

with the restriction that 1 + ro + 7, - T ~ ? ~  = 0. It is convenient for display 
purposes to replace T~ and T, by similarly subscripted values K O  and Ope, and 
K,  and OD, describing the wave forms at  8 = 0 (or n) and 8 = Qn. It follows from 
the above and relations (56), (57) and (42) that K and 8, must vary over the 
surface like 

K = K,sin8+(1-sin8)Ko, 

The restriction on 70 requires that 

KO = (I - K;)t  cos ope. (79) 

Hence, as we trace out the variation of the wave form over the surface on a K ,  8, 
chart, the locus must begin on the solid line in figure 6. A number of different loci 
with different KO, Ope, K,  and O,, are shown as examples in that figure. 

If the terms involving llka are neglected the propulsive velocity (78) can then 
be written as 

U = Qwk12[ - 3K, - 2K0 + 5 cos 8,,( 1 - K$]. (80) 

Optimum propulsion clearly occurs when KO takes its maximum or minimum 
value within the restriction (79). Hence the first step in the optimization is to 
set KO = 1 / 4 2  and 8,, = 0 for antiplectic motion or KO = - 1 / 4 2  and S,, = ?T for 
symplectic motion. For the antiplectic case the resulting variation with K,  and 
O,, is as illustrated in figure 7. (The corresponding symplectic figure merely 
requires changing the sign of K ,  U and cos O,.) The maximum negative or anti- 
plectic propulsive velocity then occurs when 

K O  = 1 / 4 2 ,  e,, = 0,  K,  = 3/2/34, s,, = n, 
F L M  65 52 
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1 .o I I I 

0 n 2n 

8, 

FIGURE 6. Examples of the variation in wave form over the surface for the case of a spherical 
body with constant equivalent cilium length and varying wave-form propulsion. -, 

for optimum antiplectic propulsion; - - -, locus for optimum thrust of a restrained body 
in the direction of symplectic motion; - 3 -, locus for optimum thrust of a restrained body 
in the direction of antiplectic motion; 0 ,  positions 0 on the surface as shown; all loci are 
reversible in the sense that the indicated 0 values may be replaced by m - 8 and the direc- 
tion of progression reversed. 

wave form at 0 = 0, n; .*..., locus for optimum symplectic propulsion; -a*- , locus 

0 II 

e,, 
FIQVRE 7. Variation of the propulsive velocity U/ko12 for a spherical body with constant 
equivalent cilium length and varying wave-form propulsion &s a function of KI  and 
for fixed values of KO = 1/42 and O,, = 0. The latter values represent a partial optimiza- 
tion towards the maximum antiplectic motion. The h a 1  optimization in this regard is 
indicated by the point A.  
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while maximum positive or symplectic motion requires 

K,  = - 1/42, e,, = 7T, K,  = - 31 434,  e,, = 0. 

819 

The wave-form variation over the surface for each of these cases is plotted in 
figure 6. In  either case the velocity is 

(1 U1/krd2),,, = i ( 4 2  +434)  = 0.805. 

Thus in this second example, which seems more realistic than the first as far as 
ciliary propulsion is concerned, the enhancement of propulsive velocity over that 
suggested by infinite models is even more significant. 

The enhancement of the propulsive effect on the finite body may initially appear 
puzzling; one thinks of the added drag of the finite body and suspects a propulsive 
velocity less than that obtained by application of infinite-model results. A closer 
look with the help of the present examplesreveals the inadequacy of such thoughts. 
It transpires that in the neighbourhood of optimum performance the sign of D 
is such that the force Fc due to the complementary Stokes flow does indeed 
represent a drag. But, in the first example, the variation of the wave amplitude 
and, in the second example, the variation of the wave form over the surface 
create a thrust which, in a sense, is more than adequate t o  balance this drag. 
Thus the propulsive velocity is enhanced over that suggested by the infinite 
models, simply so that the forces on the body or organism will balance, It does 
not follow that such enhancement will occur for all choices of variation of the 
wave form and amplitude over the surface but the effect is a significant one in 
the examples presented. 

7. Comparison with observed propulsive velocities 
It is worth attempting to compare the typical theoretical results with those 

from observations of different organisms even though such comparisons are 
hindered by the wide scatter in the experimental values quoted in the literature. 
Table 2 represents a distillation and assimilation of results from many different 
sources. The data on Opalina ranarum represent a typical example of the dif- 
ficulties in that Sleigh’s (1962) values of 1-4Hz for the frequency and 100- 
200,um/s for the metachronal wave speed seem inconsistent with the wavelengths 
of 5-25pm which are clearly present in the micrographs of Tamm & Horridge 
(1970). The values in table 2 represent a reasonable compromise. The data on 
Paramecium are taken from Sleigh (1962, chap. 5), Parducz (1966), Jahn & 
Bovee (1967), Machemer (1972), Tamm (1972) and Winet (1973); those for 
Tetrahymena from Preston (1972) and Winet (1973); those for Pleurobrachia 
from Sleigh (1963, 1966) and Tamm (1973). The values quoted for K and 0, 
were derived from the ciliary beat patterns described by Gray (1928), 
Knight-Jones (19543, Sleigh (1962, chap. 4) and others including the above 
references. More recently the beat patterns of some ciliates have been found on 
closer inspection to be strongly three-dmensional (e.g. Kuznicki, Jahn & Fonseca 
1970). Nevertheless the derived values of K and 0, for Paramecium, Tetra- 
hymena and Pleurobrachia indicate that these organisms operate close to the 
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a s 2  
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U=O.5 kWP 

1 2 3 4 5 
kl 

FIGURE 8. Non-dimensional propulsive velocity k U / w  as a function of the wave amplitude 
kl with observations from a number of ciliated micro-organisms (see table 2). 

antiplectic optima demonstrated in figures 4,5,7 and 9; on the other hand Opalina 
clearly operates in the symplectic region. 

A comparison of the propulsive velocities displayed in figure 8 must take into 
careful consideration the fact that the theory is limited to  cases of small ampli- 
tude and could only be considered valid up to about kl % $. A reduction in the 
predicted propulsive velocity a t  greater amplitudes seems likely. Indeed the 
form of the basic equations involved in a nonlinear envelope-model analysis 
strongly suggests that the factor @?12 in the expression for the propulsive velocity 
is the linearized equivalent of (1  + k212)4 - 1. Though the details of this analysis 
will not be included here the latter function is plotted in figure 8 because of its 
significant correlation with observations. Finally it should be noted than an 
improvement in the quality of the observational data would considerably aid 
evaluation of various theoretical models. 

8. Thrust on restrained organisms 
The question of whether the ciliary motion of a particular micro-organism 

has evolved in such a way as to produce optimal motion does not lie within the 
scope of this paper. It is however useful to identify the wave forms or types of 
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FIGURE 9. Variation of the generated thrust 3T/4npokal2 for a restrained spherical body 
exhibiting a constant wave-form and varying amplitude surface motion. (Note that pre- 
cisely the same figure is relevant to the quantity 4&/wZ3 in the infinite-flat-sheet solution.) 

ciliary motion which yield optimal performance within the limitations of the 
examples discussed. I n  this regard it should be noted that maximum rectilinear 
propulsive velocity may not be the most desirable and critical feature from the 
point of view of the organism. Clearly the ability to manoeuvre and accelerate 
may be of equal or greater importance. A trivial modification of the results of 
the examples in the last section permits study of the thrust that the organism 
can create if it is held a t  rest by an extraneous agent; this thrust will be some 
measure of the acceleration from rest which it could achieve if it  were not re- 
strained. If U is set equal to zero, the now finite thrust T in the 0 = 0 direction 
for the first example becomes 

T = +n,uwka12[(l - K2)3cos8,]. 

This is displayed in figure 9, which illustrates that the maximum thrust for 
symplectic motion occurs when K = 0 and 0, = 0 while that for antiplectic 
motion occurs a t  K = 0, 8, = n; the absolute value of the thrust is +n,uwkal2 in 
both cases. Approximate calculations using a mass plus added mass of %pa3 and 
the data of tables 1 and 2 indicate that the maximum initial accelerations for 
Opalina and Paramecium should be of order 1-5 and 100 body lengths/s2 re- 
spectively. Accelerations of these orders of magnitude are consistent with 
observation. 

In  the second example of 8 6, in which the wave form varies over the surface, 
the thrust on the restrained body or organism is 

T = gn,uwka12F = +rpwka12[cos S,,( 1 - K;)& - KO]. 

Hence the maximum thrust for symplectic motion (positive T )  is obtained when 

K, = - 1 1 ~ 2 ,  e,, = n, K ,  = 0, e,, = 0, 
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while the optimum for antiplectic motion occurs when 

82 3 

K ,  = 11212, e,, = 0, K ,  = 0, e,, = r. 

These surface wave-form variations are also plotted in figure 8. They are sig- 
nificantly though not radically different from the corresponding wave-form 
variations for optimal rectilinear velocity. The optimal thrust in this case is 
somewhat larger than that generated in the first example, being 1 + 11 J2 times 
greater, 

9. Concluding remarks 
In  conclusion, this paper has presented a basic method for the fluid- 

mechanical analysis of the locomotion of ciliated micro-organisms. Provided that 
the metachronal wavelength is much smaller than the overall dimensions of the 
body, the flow can be divided into an oscillatory boundary-layer flow to which 
is matched an external complementary Stokes flow. The present analysis used 
the envelope model of fluidicilia interaction to construct equations of motion 
for the oscillatory boundary layer. The final solution for the propulsive velocity 
is obtained by application of the condition of zero total force on the organism; 
alternatively, if the organism is held at  rest, the thrust it generates can be 
computed. 

Further analyses employing this basic method might use a different fluid/cilia 
interaction model, such as the sublayer model of Blake (1972). The present 
method could also be improved and extended by including cases in which the 
surface or ciliary-tip motion is three-dimensional and in which the direction of 
wave propagation differs from that of the effective stroke. 

The author deeply appreciates the advice and encouragement of Professor T. Y. 
Wu and many suggestions and discussions with Dr John Blake, Dr Allen Chwang 
and Dr Howard Winet. This research was sponsored by the National Science 
Foundation under grant GK-31161X and by the Office of Naval Research under 
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